

CE c¶us

TLK 48 MICROPROCESSOR-BASED DIGITAL ELECTRONIC REGULATOR

TECHNICAL DATA

CARATTERISTICHE MECCANICHE			
Housing	Self-extinguishing plastic, UL 94 V0		
Dimensions	48x48 mm DIN – depth 98 mm		
Weight	225 g approx.		
Connections	2x1 mm ² screw terminal block		
Mounting	Flush in panel in 45,5x45,5 mm hole		
Front panel protection	IP 54 mounted in panel with gasket		
ELECTRICAL DATA			
Power supply	24, 115, 230 VAC +/-10%		
AC Frequency	50 / 60 Hz		
Power consumption	5 VA approx.		
INPUT DATA			
Thermocouple	J, K, S – According to IEC 584-2 accuracy class 1 or 2		
Thermoresistance	Pt 100 – According to IEC 751 accuracy class A or B		
Infrared sensors	TECNOLOGIC IRS J and K		
Thermistor	PTC KTY 81-121 (990 Ω at 25°C) ; NTC 103AT-2 (10 k Ω at 25°C)		
Current input	0/420 mA		
Voltage input	050 mV, 060 mV, 1260 mV, 0/15 V, 0/210 V		
Normalized signals input impedance	0/420 mA: 51 Ω mV and V: 1 MΩ		
OUTPUT DATA			
Relay outputs	Up to 2 outputs SPST-NO (8 A-AC1, 3 A-AC3 / 250 VAC)		
Voltage output for SSR driving	Up to 2 outputs : 8 mA at 8 VDC with protection against short circuits		
Auxiliary power supply output	10 VDC / 20 mA max		
FUNCTIONAL DATA			
Control	ON/OFF, Neutral Zone, PID single and double action programmable		
Overall accuracy	+/-0.15% fs		
Display resolution	According to the used probe 1/0,1/0,01/0,001		
Measurement range	According to the used probe and to the measurement unit		
Unit of measurement	°C - °F, programmable		
Max. cold junction compensation drift	0.04°C/°C with operating temperature 050°C after warm- up of 20 min.		
Measure sampling time	130 ms		
Display	4 digit red h=12 mm		
Parameters access	Protected by password		
Operating temperature	055°C		
Operating humidity	3095 RH% without condensation		

MEASUREMENT RANGE

PROBE	RANGE 4 DIGIT	RANGE 4 DIGIT with D.P.
tc J SEnS = J	-160 1000°C -256 1832°F	
tc K SEnS = CrAl	-270 1370°C -454 2498°F	
tc S SEnS = S	-50 1760°C -58 3200°F	
Pt 100 SEnS = Pt1	-200 850°C -328 1562°F	-199.9 … 850.0°C -199.9 … 999.9°F
PTC SEnS = Ptc	-55 150°C -67 302°F	-55.0 … 150.0°C -58.0 … 999.9°F
NTC SEnS = ntc	-50 … 110°C -58 … 230°F	-50.0 … 110.0°C -58.0 … 230.0°F
050 mV SEnS = 0.50	-1999 9999	-199.9999.9 -19.99 99.99 -1.999 9.999
0…20 mA SEnS = 0.20	-1999 9999	-199.9999.9 -19.99 99.99 -1.999 9.999

PROBE		
	4 DIGIT	4 DIGIT WILLI D.P.
420 mA	1000 0000	-199.9999.9
SEnS = 4.20	-1999 9999	-19.99 99.99
		-1.000 0.000
060 mV	1000 0000	-199.9999.9
SEnS = 0.60	-1999 9999	-19.99 99.99
		-1.999 9.999
12…60 mV	4000 0000	-199.9999.9
SEnS = 12.60	-1999 9999	-19.99 99.99
		-1.999 9.999
01V	1000 0000	-199.9999.9
SEnS = 0.1	-1999 9999	-19.99 99.99
		-1.999 9.999
05 V		-199.9999.9
SEnS = 0.5	-1999 9999	-19.99 99.99
02.110 0.10		-1.999 9.999
1 5 V		-199.9999.9
SEnS = 1.5	-1999 9999	-19.99 99.99
02110 - 1.0		-1.999 9.999
0 10 V		-199.9999.9
SEnS = 0.10	-1999 9999	-19.99 99.99
SE115 - 0.10		-1.999 9.999
2 10 V		-199.9999.9
SEnS = 2.10	-1999 9999	-19.99 99.99
32113 - 2.10		-1.999 9.999

ALARM OUTPUTS

The alarm functioning is depending on the Process Value and it's programmable through a 4 figures code; depending on the value of the suitable parameters, it's possible to have 6 different types of alarms :

	Alarm type	Alarm output
1	Absolute Low alarm: it's activated when the Process Value is lower than the alarm threshold	ALn SP PV
2	Absolute High alarm: it's activated when the Process Value is higher than the alarm threshold	SP O ALn
3	Absolute Low band alarm: it's activated when the Process Value is lower than the low alarm threshold or higher than the high threshold alarm	ALnL SP PV 0 ALnH
4	Low Deviation alarm: it's activated when the Process Value is lower than (SetP+ low threshold)	SP ALn
5	High Deviation alarm: it's activated when the Process Value is higher than (SetP+ high threshold)	SP ALn

6 <u>Deviation band alarm:</u> it's activated when the Process Value is lower than (SetP+low threshold) and higher than (SetP+ high threshold)	SP ALDE ALDE	
Ala	arms hysteresis	
The alarms functioning is influenced by the hystern alarm, the alarm is activated when the Process Value goes upper than the alarm three structures.	eresis phenomenon which works asymmetrically. In case of low alue goes under the threshold alarm and it's deactivated when eshold; in case of high alarm, it's viceversa.	
LOOP BREAK alarm function		
The LB alarm is needed to segnalise the interruption of the control loop, because of a thermocouple shortcircuit or inversion or interruption of the load.		
R	AMP FUNCTION	
The function of ramp and fall it's needed to reach the Set Point value within a predefined time, which has to be programmed in advance and has to be necessarily longer than the one of the process controlled. The meaning of this function is not to place under thermical stress the treated materials. Once the instrument has reached the first Set Point (SP1) it's possible to have the automatic commutation on the second Set Point (SP2) after a programmed time, with a simple automatic cycle. That function is available for all the programmable control types.	PV [Unit] SP Slot winne Set [Unit] SP1 SP2 Autro change Set [min.] SP2 Slot time [min.] SP2 Slot time [min.]	

CONTROL MODE FEATURES

ON / OFF CONTROL This control works on output 1rEG, depending on the Set Point, on the functioning mode and on the hysteresis programmed. The control is symmetrical or asymmetrical. Symmetrical means that the output is ON untill when the Process Value has reached (SP+hysteresis) or when has reached (SP-hysteresis). Asymmetrical means that the output is ON up to the reaching of the Set Point, to become again ON when it has reached (SP-hysteresis). **NEUTRAL ZONE CONTROL** This type of control concerns both outputs and it is used to control a plant which is equipped with a heating ΡV and a refrigerant element. This control works on the HSEt SP outputs depending on the measure, on the Set Point HSET and on the hysteresis programmed. time 1rEG (heating) ÓŃ off off 2rEG (cooling) off

ts are			
ts are			
ts are			
ts are			
used			
which			
id an			
(ex.			
it and			
es of			
Manual reset -100.0 100.0%			
Output 1rEG cycle time 0.1 130.0 s			
Output 2rEG cycle time 0.1 130.0 s			
wer			
ess or			
at the changing of the Set Point.			
AUTOTUNING FUNCTION			
ulated			
permits the PID parameters calculation through a tuning cycle FS type and at the end of this operation the			
parameters are stored into the instrument's memory and remain constants during the control. The Autotuning			
cycle duration has been limited at 12 hours maximum.			
SELFTUNING FUNCTION			
It's an algorithm that permits to calculate the PID parameters during the control. It has the meaning to correct the			
es the			

That function is only workling with PID control and allows the limiting of the control power when the instrument is switched on, for a programmable time. This is useful when the actuator, driver by instrument, could be damaged by power too high supplied when the application is not yet in the normal rating. When the Soft-Start is active, it's not possibile to execute the Autotuning, because it may gives an excessive power.

MECHANICAL DIMENSIONS (mm)

FRONT PANEL DESCRIPTION

		TLK 48 5 6 7 6 7 6 7 1 6 7 7 9 9 9 9 9 9 9 1 1 1 1 1 1 1 1	
1 - Key P	It's used to get into the parameters programming and to confirm the programmed parameter.	7 – Led SET	Lighted, it signalises the input in programmation mode.
2 - Key DOWN	In the programming phase, it decreases of one unit the figure on which it's located the slider. In the normal functioning, it visualises the current measured by input TA HB.	8 - Led AT/ST	If it's flashing, the instrument is executing the AUTO-TUNING. If it's permanently lighted the instrument is executing the SELF-TUNING.
3 – Key UP	In the programming phase, it increases of one unit the figure on which it's located the slider. In the normal functioning, it visualises the output control power.	9 - Led (-) Shift index	It indicates that the process value is lower than as programmed Set.
4 – Key U	Key with function programmable as: Activate Autotuning and Selftuning funcions, swap the instrument into manual control, aknowledge the alarm, change the active Set Point, deactivate the control.	10 – Led (=) Shift index	It indicates that the process value is within the programmed range.

5 – Led OUT1 Lighted, it signalises that output OUT1 is active.

11 – Led (+) Shift index It indicates that the process value is higher than as programmed Set.

6 – Led OUT2 Lighted, it signalises that output OUT2 is active.

CONNECTIONS DIAGRAM

CERTIFICATIONS AND CONFORMITY

- ▲ CE Conformity: CEE EMC 89/36 (EN 61326) CEE LT 73/23 and 93/68 (EN 61010-1)
- ▲ UL CONFORMITY: File n. E 206847

TECNOLOGIC SpA.-Via Indipendenza,56 27029 Vigevano ITALY – TEL. +39 038169871 – FAX +39 0381698730 e-mail: info@tecnologic.it – support@tecnologic.it http://www.tecnologic.it